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The aim of this work is twofold. In the first part, a detailed description is given of a specific vibrational
model, designed for calculations on the vibrational energy levels in benzene and benzene isotopic species of
D6h symmetry. For the description of the C-H stretch system in benzene, a local mode (LM) formalism was
applied, while, for the remaining non-C-H stretch vibrations, a symmetrized mode (SM) treatment was
applied: this was called the combined LM/SM model. The model is based on a set of complex symmetrized
curvilinear vibrational coordinates, which can be expressed as simple linear combinations of Whiffen’s
coordinates. The description in terms of complex symmetrized coordinates and wave functions allows for the
construction of a separable symmetrized infinite-dimensional vibrational basis set, which is of crucial importance
for large-scale calculations. In the second part of this work, using the described complex symmetrized LM/
SM vibrational model, calculations have been carried out on a large number of vibrational energy levels of
four benzeneD6h isotopomers. The aim of the calculations was to redetermine a reliable set of harmonic
force constants for benzene. Some of the force constant values obtained in the present work are substantially
different from previous determinations by other authors. Using the presently determined set of harmonic
force constant values in the calculations, a very good fit has been obtained to a large number of experimentally
measured vibrational (both fundamental and overtone) energy levels of various symmetries, belonging to all
four D6h benzene isotopomers: C6H6, C6D6, 13C6H6, 13C6D6.

I. Introduction

The ground electronic state potential surface of benzene has
been the object of numerous studies.1-15 For a semirigid
molecule such as benzene, the potential field can be expanded
as a Taylor series in terms of displacement coordinates from
the equilibrium position:

Here Sk ) symmetrized curvilinear (Whiffen’s) coordinates,4

Fi,k ) harmonic force constants,Fi,k,j ) anharmonic cubic force
constants, etc. Despite the large number of vibrational degrees
of freedom in benzene (30), due to the high molecular symmetry
(D6h), the number of independent harmonic force constantsFi,k

is 34, there being only 237 unique cubic force constantsFi,k,j,
etc. In general, the molecular potential energy surface can be
expanded in a variety of coordinate types. Very often the
expansion in terms of normal coordinates is used in preference
to the symmetrized coordinatesSk. In that case the nondiagonal
quadratic force constantsΦi,k vanish; however, the relevant
series expansion is more slowly convergent, because a consider-
able number of higher order force constants (cubic, quartic, etc.)
attain significant values. Another advantage of symmetrized
curvilinear coordinates over mass-weighted normal ones is that
the force constantsFi,k, Fi,k,j, ... are identical for all isotopic
species, which sustain theD6h symmetry of benzene (e.g., C6H6,
C6D6, 13C6H6, and13C6D6).23

A great deal of work over the years has been concentrated
on the accurate determination of the harmonic force constants

Fi,k,1-12,14whose values are most essential for the expansion in
eq 1. In general, two possible routes can lead to the determi-
nation ofFi,k.

Chronologically the one established earlier was the empirical
determination of the force constants,1-8 which proceeds in the
following way. RegardingFi,k as variable parameters, calcula-
tions are being perfomed (e.g., making use of Wilson’s FG
analysis1) to establish a correspondence between a set ofFi,k

values and certain experimentally observable quantities (mainly
fundamental vibrational frequencies for C6H6 and some of its
isotopomers6-8,16-27). In general, the empirical determination
of Fi,k is carried out for each symmetry block of vibrations
separately.1,8 A full account of the work done in this direction
can be found in the benchmark paper by Goodman, Ozkabak,
and Thakur.8 A serious problem with this approach comes from
the fact that benzene is a strongly anharmonic molecule (mainly
due to the anharmonicity of the C-H stretch bonds). As a result
of this many anharmonic force constantsFi,k,j andFi,k,j,l attain
nonnegligible values and also have to be taken into account.
This makes the number of variable parameters already too large
for a reliable determination of the harmonic force constant
values.

The second route, which is drawing enhanced interest lately,
consists of the ab initio or density functional computations on
Fi,k

8,10,12,14 or even higher order force constantsFi,k,j and
Fi,k,j,l.11,15,28So far, the most accurate ab initio harmonic force
field for benzene has been obtained by Martin, Taylor, and
Lee.12 In general, the verification of the computationally
obtained force field is carried out by using the harmonic force
constants as input parameters for the calculation of fundamental
frequencies or other quantities, which can be checked against† E-mail: rashev@issp.bas.bg. Fax: 00 359 2 975 36 32.

V ) (1/2)∑
i,k

Fi,kSiSk + (1/6)∑
i,k,j

Fi,j,kSiSkSj + ... (1)
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the experimentally measured data. However, here the same
problem arises again, which is due to the strong molecular
anharmonicity: it is not clear to what extent the mismatch
between the theoretically calculated and the experimentally
measured values is due to inaccuracies in the calculated
harmonic force constantsFi,k or to the interference of the
anharmonic force constants, such asFi,k,j andFi,k,j,l.8,11,14In fact,
the harmonic force constantsFi,k are related rigorously to the
harmonic normal mode (NM) frequenciesωi but not to the
fundamental frequenciesνi, which are the experimentally
observable quantities. However, in such a strongly anharmonic
molecule as benzene, the anharmonic corrections∆i ) ωi - νi

are quite large, especially for some of the modes. In second-
order perturbation theory (disregarding resonance effects), the
anharmonic corrections∆i are given by

wherexii, xik, andgii are the anharmonic constants anddi is the
degeneracy of theith mode. The anharmonic constantsxii, xik,
and gii can be expressed analytically through the cubic and
quartic force constantsFi,k,j andFi,i,k,k. Thus, the relation between
harmonic,ωi, and fundamental,νi, frequencies involves anhar-
monic force constants, whose values are still less reliably known
than the harmonic ones. Without going into further detail, we
just note that at present in the literature there exist several sets
of harmonic force constants for benzene, derived using different
methods, which have been discussed in refs 11-14 and
elsewhere. They differ substantially from each other.

Our approach to an empirical determination of the harmonic
force constants29,30 is based on two main points. First is the
well-known fact that anharmonicity in benzene, although
extremely strong, is almost entirely concentrated on the (six)
individual C-H bond stretches. The C-H stretch system in
benzene is most adequately described in terms of the local mode
(LM) formalism, where the anharmonicity is of entirely diagonal
type.31-34 The main advantage from using the LM approach
consists of the fact that, for the vibrational characterization of
the C-H stretch system in benzene, only a single (diagonal)
anharmonic force constant,fsss, is required (instead of seven
cubic ones in terms of symmetrized coordinates,F2,2,2, F2,7,7,
F2,20,20, F2,13,13, F7,7,7, F7,20,20, andF7,13,20

29), besides the four
harmonic force constantsfss, f1,2, f1,3, and f1,4, replacing the
symmetrized force constantsF2,2, F20,20, F7,7, andF13,13. Second,
we are making full use of the high molecular symmetry (D6h)
by employing a specific complex symmetrized vibrational
treatment (basis set),30,35,36which is outlined further below. The
main advantage from the completely symmetrized separable
(infinite-dimensional) vibrational basis set employed is that
large-scale vibrational calculations can readily be performed
with reasonably small Hamiltonian matrix sizes. This is so
because all selected basis states, required for a convergent
calculation on the molecular vibrational levels of a certain
symmetry type, can be chosen to belong to one and the same
symmetry type.

Taking all this into account, in our work29,30 as well as in
the present work, a specific combined vibrational model was
employed, designed to reduce the number of significant force
constants, required for the adequate description of benzene
vibrational levels, to the minimum. This is achieved by using
local bond coordinates (and force constants) for the description
of the C-H stretch system and symmetrized coordinates and
force constants for the non-C-H stretch (“ring”) modes. This
is called the combined LM/SM (SM) symmetrized mode)

model. A model of this type was previously used by Zhang et
al.37,38 however in nonsymmetrized form. We have used a
preliminary version of our model previously for studying higher
C-H stretch overtone absorption spectra.36,39

In our recent work29 we have investigated only the totally
symmetrical vibrational block A1g(ν1,ν2) of benzene. From a
very good fit achieved between the calculated29 and experi-
mentally measured8,22,23fundamental frequenciesν1 andν2 for
all four benzene isotopomers, C6H6, C6D6, 13C6H6, 13C6H6, and
13C6D6, a set of force constant valuesF1,1 andF1,1,1 (character-
izing the ring modeν1), a set of force constantsfss, f1,2, f1,3, f1,4,
and fsss (pertaining to the C-H stretch system), andF1,2

(describing the coupling between both vibrational systems) have
been determined. In a subsequent work,30 the E1u(ν18,ν19,ν20)
mode block was studied and the harmonic force constant values
F18,18, F19,19, F20,20, F18,19, F18,20, and F19,20 were determined
empirically from a fit to the experimentally measured funda-
mentalsν18, ν19, andν20 (as well as some C-H stretch overtone
energies) for benzene C6H6.17,18,31,40In both cases, limited scale
calculations have been carried out, encompassing only the
Hamiltonian terms, pertaining to a single symmetry mode block
in benzene, A1g(ν1,ν2)29 and E1u(ν18,ν19,ν20),30 respectively. At
present it has become clear that the calculations,29,30 involving
only a single symmetry vibrational block, can yield correct
values for the force constants belonging to the ring modes, e.g.,
F1,1, F18,18, F19,19, F18,19, F18,20, F19,20, etc., but not for the
harmonic force constants, describing the C-H stretch system:
fss, f1,2, f1,3, f1,4. Determination of correct values for these latter
force constants requires the implementation of large-scale
calculations, involving the Hamiltonian terms for all four
symmetry mode blocks in benzene, containing a C-H stretch
vibration: A1g, E2g, B1u, E1u. Such large-scale calculations will
be carried out in the present work to obtain empirically an
improved set of harmonic force constant valuesfss, f1,2, f1,3, and
f1,4. In addition the values previously obtained29,30 for the ring
mode harmonic force constants as well as some cubic diagonal
force constants will be essentially confirmed (with small
modifications), on the basis of a very good fit achieved between
the theoretically calculated and the experimentally measured
fundamentals as well as some overtone energies (of different
symmetries) for all four benzeneD6h isotopomers, C6H6, C6D6,
13C6H6, and13C6D6.

This work is organized as follows. In section II a brief outline
of complex symmetrized formalism in symmetric top point
groups as well as a more detailed treatment ofD6h (the benzene
symmetry group) complex symmetry species (irreducible rep-
resentations) is given. On this basis, expressions for the
curvilinear complex symmetrized vibrational coordinates (simple
linear combinations of Whiffen’s coordinates4) are listed and
discussed. In section III the theoretical LM description of the
C-H stretch Hamiltonian in benzene and its symmetry-adapted
eigenfunctions is given in detail, in particular local and nonlocal
basis states of all possible symmetry types. In section IV the
zeroth-order and interaction Hamiltonians are defined, as well
as the basis set functions in symmetrized and product form.
Next, a search procedure for selection of an active space of
basis vectors and derivation of the relevant Hamiltonian matrix
is outlined, whose diagonalization is subsequently carried out
using a Lanczos tridiagonalization routine. In section V are
presented and discussed the results from the block-limited and
large-scale numerical calculations, yielding the A1g, E2g, B1u,
and E1u fundamentals as well as some vibrational overtone
energies for the fourD6h benzene isotopomers C6H6, C6D6,
13C6H6, and13C6D6. By adjustment of the calculated vibrational

∆i ) -xii(1 + di) - (1/2)∑
k*i

xikdk - gii (2)
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energies to the experimentally measured frequencies, values for
the most important harmonic and anharmonic force constants,
relevant to the C-H stretch vibrational system as well as to
the relevant ring vibrations in benzene, have been determined.
In section VI we conclude.

II. Complex Symmetry Species forD6h and Symmetrized
Curvilinear Vibrational Coordinates for Benzene

In D6h symmetry (as well as in any symmetric top point
group) it can be shown30 that specific “complex symmetry
species” (irreducible representations of the group) can be
defined, replacing the conventional real representations (sym-
metry species).1 For a quantum (molecular) system, belonging
to a symmetric top point group, the Hamiltonian eigenfunctions
(electronic, vibrational, etc.) can be defined in complex form,
as eigenfunctions of the angular momentumz-component as well
(z is the symmetric top axis). The main advantage from the
introduction of complex symmetry species (CSSs) is that they
behave effectively as 1-D (nondegenerate) symmetry species
in the sense that (i) they are multiplicative, i.e., the product of
any two CSS functions belongs to a well-defined CSS of the
group again, and (ii) a Hamiltonian matrix element,〈i|H|k〉, can
be nonzero (and totally symmetric) only in the case when|i〉
and |k〉 belong to one and the same CSS. Otherwise it will
necessarily be zero. Such an approach allows the symmetry
properties of symmetric top point groups (where doubly
degenerate irreducible representations E occur) to be reduced
to the simple multiplicative form of abelian groups (with
nondegenerate irreducible representations only). Using CSSs,
it is possible to define readily infinite dimensional molecular
Hamiltonian eigenfunction basis sets (electronic, vibrational,
etc.) in separable (product) form.

In Table 1 the transformation properties of complex symmetry
species of the symmetric top point groupD6h are summarized,
under the basic symmetry operations (generators) of the group.
In the same table also the multiplication rules for the CSSs are
given. Table 1 can be compared to the well-known character
table for this group (e.g., ref 1), displayed in Table 2. There
are several important distinctions between real and complex
symmetry species. Each real 2-D symmetry species (e.g., E1u,
E2g, etc., Table 2) has been decomposed into two complex

conjugated CSSs (described by complex conjugated functions),
e.g., E1u f (E1ua, E1ub), E2g f (E2ga, E2gb), etc., which can
effectively be regarded as 1-D symmetry species ofD6h,
analogous to those occurring in the point groupC6.1 There is
important distinction in the definition of symmetry operations
c2′ and c2′′ (rotations by π/2 around two in-plane axes,
perpendicular to each other) between Tables 1 and 2. In the
case of CSSs (Table 1) besides rotations, these operations also
include complex conjugation of the function transformed (e.g.,
E1ua and E1ub are transformed into each other). The nondegen-
erate real symmetry species A1g, A2g, B1u, B2u, etc. (Table 2)
are replaced by CSSs Ag, Bu, etc. (Table 1). These latter
symmetry species are a new concept and should be explained
in more detail. The real symmetry species A1g (Table 2) is
readily seen to transform according to the Ag symmetry species
in Table 1. However, the symmetry species A2g (Table 2) does
not transform like any one of the complex symmetry species
displayed in Table 1. But if we take the productiA2g, the
obtained complex function is readily seen to transform according
to CSS Ag again (Table 1). What is more interesting, a complex
function can be defined asf ) (A1g + iA2g)/21/2 (whose real
and imaginary parts are ortho-normalized and transform ac-
cording to the symmetry species A1g and A2g, respectively),
which transforms according to the CSS Ag (Table 1). Functions
of this type, with both real and imaginary parts nonzero,
naturally arise in cc pairs, as the excited vibrational states
(overtones) of a 2-D harmonic oscillator, being the eigenfunc-
tions of both Hamiltonian and angular momentumz-component
operators. In the general case, a product of two functions,f1
and f2, belonging to the complex symmetry species E1ua and
E1ub, respectively (which do not belong to the same cc pair,
i.e., f1* * f2), is a function,f3, belonging to the Ag CSS of the
general form, i.e., with both components A1g and A2g nonzero,
orthogonal, and normalized:f3(Ag) ) f1(E1ua) f2(E1ub) ) (A1g

+ iA2g)/21/2. In a similar manner, the complex symmetry species
Au ) A2u ( iA1u, Bg ) B1g ( iB2g, and Bu ) B2u ( iB1u have
been defined in Table 1.

A brief discussion is due concerning the correspondence
between multiplication rules for real symmetry species (Table
2) and CSSs (Table 1). E.g., consider the rule (Table 2)1

In the case of complex symmetry species, using (E1ua, E1ub)
instead of E1u, and (E2ua, E2ub) instead of E2u, the following
system of multiplication rules corresponds to the above rule
(eq 3):

TABLE 1: Transformation Table of the Complex Symmetry
Species of Point GroupD6h

a

D6h c6 c2′(ψfψ*) c2′′(ψfψ*) i

Ag ) A1g ( iA2g 1 1 1 1
Au ) A2u ( iA1u 1 -1 -1 -1
Bg ) B1g ( iB2g -1 1 -1 1
Bu ) B2u ( iB1u -1 -1 1 -1
E1ga F 1 1 1
E1gb F* 1 1 1
E1ua F -1 -1 -1
E1ub F* -1 -1 -1
E2ga F2 1 1 1
E2gb F2 1 1 1
E2ua F2 -1 -1 -1
E2ub F2 -1 -1 -1

a The notation (ψfψ*) attached to the symmetry operationsc2′ and
c2′′ means that, in addition to multiplying by the indicated factor,
complex conjugation must also be performed.i ) space inversion.c6

) rotation about the top axis of the molecule byπ/3. c2′ and c2′′ )
rotations byπ about two axes, perpendicular to the top axis of the
molecule, and perpendicular to each other.F ) eiπ/3, andF* ) e-iπ/3.
S × A ) S, E1a,b × B ) E2b,a, E2a,b × B ) E1b,a, E1b,a × E1b,a ) E2a,b,
E1a,b × E1b,a ) A, E2a,b × E2b,a ) A, E1a,b × E2a,b ) B, E1a,b × E2b,a )
E1b,a, g × u ) u, and u× u ) g.

TABLE 2: Character Table of the Symmetry Species of
Point Group D6h

a

D6h c6 c2′ c2′′ i

A1g 1 1 1 1
A2g 1 -1 -1 1
A1u 1 1 1 -1
A2u 1 -1 -1 -1
B1g -1 1 -1 1
B2g -1 -1 1 1
B1u -1 1 -1 -1
B2u -1 -1 1 -1
E1g 1 0 0 2
E2g -1 0 0 2
E1u 1 0 0 -2
E2u -1 0 0 -2

a Reference 1. S× A ) S, E1 × B ) E2, E2 × B ) E1, E1 × E1

) E2 × E2 ) A1 + A2 + E2, E1 × E2 ) B1 + B2 + E1, g × u ) u, and
u × u ) g.

E1u× E2u ) E1g + B1g + B2g (3)
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As already discussed in our pervious work,30,36 benzene
vibrations can be described in terms of complex curvilinear
symmetrized vibrational coordinatesqk (transforming according
to the CSSs ofD6h, Table 1), which are obtained as simple linear
combinations of Whiffen’s symmetry coordinates.4 Expressions
for the qk coordinates as linear combinations of local (bond
stretch and angle distortion) coordinates1,4 as well as vice versa,
since the transformation matrixes are unitary, are given in Table
3. The coordinatesqk have already been introduced in ref 36,
in slightly modified form. These complex coordinates have been
used in our previous work on benzene and will be used in the
present work as well.

III. LM Symmetrized Description of the C -H Stretch
Vibrational System in Benzene

The zeroth-order HamiltonianH0
CH for the C-H stretch

vibrational system in benzene is written in the form

consisting of six uncoupled identical Morse oscillators.gss )
1/mH + 1/mC (mH, mC ) the masses of the H and C atoms,
respectively),as ) the anharmonic parameter, andDs ) the
dissociation energy. The Morse potential can be expanded in
powers ofs:

wherefss) 2Ds(as)2, fsss) -6Ds(as)3 ) -3asfss, etc. are diagonal
harmonic, cubic, etc. force constants. Hence, all force constants
of a Morse oscillator, of arbitrary order, can be expressed
through the two parametersDs and as. A Morse oscillator
Hamiltonian is exactly solvable, with eigenfunctions|n〉 and
eigenvaluesEn:

whereωCH ) (1/2π)(fssgss)1/2 ) harmonic frequency,xCH ) (1/
2)ωCH(asks)2 ) anharmonic constant, andks ) [p(gss/fss)1/2]1/2.
The eigenfunctionsψ of H0

CH are products of six Morse
oscillator eigenfunctions,ψ ) ∏i)1

6|ni〉i, corresponding toni

excitation quanta in theith oscillator, the energy of such a
configuration being given byEψ ) ∑i)1

6Eni. E.g., |2〉1|1〉3 )
2113 is an eigenstate which has two excitation quanta in bond
oscillator 1 and one quantum in oscillator 3, while oscillators 2
and 4-6 have zero excitation quanta. A configurationni is of
purely local type, since only one bond oscillator (theith) is
excited withn quanta, while a state with more than one oscillator
excited is of nonlocal character; the stronger, the more evenly
are the excitations distributed among the six bond oscillators.
A state (configuration)ψ ) ∏i)1

6|ni〉i is said to belong to the
n ) ∏i)1

6ni overtone system.
To obtain complex-symmetry-adapted orthogonal wave func-

tions æ, appropriate linear combinations of the configurations
ψ must be taken,32-34 which can have one of the following
complex symmetry species (Table 1): Ag ) A1g, Ag ) iA2g,
Bu ) iB1u, Bu ) B2u, E2ga, E2gb, E1ua, E1ub. This is an entirely
combinatoric problem, which can be solved in the way described

below. To introduce the necessary notation

where L ) the normalization factor (it can take one of the
following values, 1, 2, 3, 6, 12),S ) the (complex) symmetry
species ofæ, f ) the type specifier, which will be introduced a
little later, the subscripti+k should be read asi+k-6 whenever
i+k exceeds 6, and the symmetrized state is obtained by rotating
the initial configurationm1n2...k6 L - 1 times in clockwise
direction around the benzene ring by an appropriate angle
(fraction of 2π) and multiplying each time by an appropriate
phase factorCk. In ref 29 expressions have been given for the
A1g symmetry states only, which are required for investigation
of the A1g(ν1,ν2) vibrational system in benzene. In the present
work, the C-H stretch states of all possible symmetry types
are described in detail and an algorithm is designed for
generating these states.

Overtone manifoldn ) 0 consists of one A1g (the ground)
state, with allnk ) 0: æ0 ) |1;A1g;0...0〉.

E1ua× E2ua) Bg ) B1g+ iB2g, E1ua× E2ub ) E1gb

E1ub× E2ua) E1ga, E1ub× E2ub ) Bg* ) B1g - iB2g

(4)

H0
CH ) ∑

i)1

6 [-
p2

2
gss

∂
2

∂si
2

+ Ds(1 - e-assi)2] (5)

Ds(1 - e-ass)2 ) (1/2)fsss
2 + (1/6)fssss

3 + (1/24)fsssss
4 + ...

(6)

En ) ωCH(n + 1
2) - xCH(n + 1

2)2
(7)

TABLE 3: Complex Symmetrized Vibrational Coordinates
qi of Benzenea

s1 s2 s3 s4 s5 s6

q2(Ag)A1g) g g g g g g
q7a(E2ga) g gG* g(G*)2 g(G*)3 g(G*)4 g(G*)5

q7b(E2gb) g gG gG2 gG3 gG4 gG5

q20a(E1ua) ig igF* ig(F* )2 ig(F* )3 ig(F* )4 ig(F* )5

q20b(E1ub) -ig -igF -igF2 -igF3 -igF4 -igF5

q13(Bu)iB1u) ig -ig ig -ig ig -ig

t1 t2 t3 t4 t5 t6

q1(Ag)A1g) g g g g g g
q8a(E2ga) g(G*)5 g gG* g(G*)2 g(G*)3 g(G*)4

q8b(E2gb) gG5 g gG gG2 gG3 gG4

q14(Bu)B2u) -g g -g g -g g
q19a(E1ua) g(F* )5 g gF* g(F* )2 g(F* )3 g(F* )4

q19b(E1ub) gF5 g gF gF2 gF3 gF4

r1t0 r2t0 r3t0 r4t0 r5t0 r6t0

q6a(E2ga) g gG* g(G*)2 g(G*)3 g(G*)4 g(G*)5

q6b(E2gb) g gG gG2 gG3 gG4 gG5

q12(Bu)iB1u) ig -ig ig -ig ig -ig

â1s0 â2s0 â3s0 â4s0 â5s0 â6s0

q3(Ag)iA2g) ig ig ig ig ig ig
q9a(E2ga) ig igG* ig(G*)2 ig(G*)3 ig(G*)4 ig(G*)5

q9b(E2gb) -ig -igG -igG2 -igG3 -igG4 -igG5

q15(Bu)B2u) g -g g -g g -g
q18a(E1ua) ig igF* ig(F* )2 ig(F* )3 ig(F* )4 ig(F* )5

q18b(E1ub) -ig -igF -igF2 -igF3 -igF4 -igF5

δ1t0 δ2t0 δ3t0 δ4t0 δ5t0 δ6t0

q16a(E2ua) igF* igF*G* igF* (G*)2 igF* (G*)3 igF* (G*)4 igF* (G*)5

q16b(E2ub) -igF -igFG -igFG2 -igFG3 -igFG4 -igFG5

q4(Bg)iB2g) ig -ig ig -ig ig -ig

γ1s0 γ2s0 γ3s0 γ4s0 γ5s0 γ6s0

q5(Bg)iB2g) ig -ig ig -ig ig -ig
q10a(E1ga) ig igF* ig(F* )2 ig(F* )3 ig(F* )4 ig(F* )5

q10b(E1gb) -ig -igF -igF2 -igF3 -igF4 -igF5

q11(Au)A2u) g g g g g g
q17a(E2ua) ig igG* ig(G*)2 ig(G*)3 ig(G*)4 ig(G*)5

q17b(E2ub) -ig -igG -igG2 -igG3 -igG4 -igG5

a Conversion matricesAik of complex symmetrized vibrational
coordinatesqi in terms of curvilinear internal coordinatesxk (si, tI, Ri,
âi, γI, δi) and vice versa. Rows:qi ) ∑Aikxk. Columns: xi ) ∑Aik*qk.
s0 andt0 are equilibrium C-H and C-C bond lengths, respectively,g
)1/61/2, F ) eiπ/3, F* ) e-iπ/3, G ) e2iπ/3, andG*) e-2iπ/3.

æ ) |L;S(f);m1n2...k6〉 )
1

L1/2
∑
k)0

L-1

Ckm1+kn2+k...k6+k (8)
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Next, overtone manifoldn ) 1 contains six states, each of
them obtained from the initial configuration 1102... by using the
phase factors identical to those used to obtain the CST
coordinatesq2, q13, q7a,b, and q20a,b from the six local bond
stretchessi (s-type, Table 3):

whereF ) eiπ/3, F* ) e-iπ/3, G ) e2iπ/3, andG* ) e-2iπ/3.
Next, overtone manifoldn ) 2 is considered, encompassing

21 symmetrized states. Here there are already both purely local
configurations (giving rise to 6 symmetrized states) and nonlocal
configurations (15 symmetrized states). The six purely local
statesæ7-æ12 are obtained in a manner identical to that of the
n ) 1 states (nine). As an example, the first one of them is
shown here:

Next, there are six nonlocal states,æ13-æ18, originating from
the configuration 111203..., which are obtained analogously to
thet-type (local bond C-C stretchesti) coordinatesq1, q14, q8a,b,
andq19a,b (Table 3):

Next, there are six nonlocal states,æ19-æ24, originating from

the configuration 161203... of the symmetry species Ag ) A1g,
Bu ) iB1u, E2ga, E2gb, E1ua, and E1ub (s-type). Here we give only
the A1g state:

And to finish with manifoldn ) 2, there is still the configuration
1114, which yields three more symmetrized states:

Next, consider then ) 3 overtone manifold. This manifold
contains 56 symmetrized states in total. In the first place, there
are six purely local (s-type) states,æ28-æ33, arising from the
configuration 31 (located at the lowest energy within the
manifold, analogous to then ) 1 andn ) 2 cases, considered
above). Here, only the first one of them will be displayed:

The remaining 47 states belonging to then ) 3 manifold are
of nonlocal character. There are six (s-type) states,æ34-æ39,
originating from the configuration 161112, the first one of which
is

Next, there are twoL ) 2 states,æ40 andæ41, originating from
the configuration 111315, which are given by the expressions:

The remaining configurations belonging ton ) 3 are asym-
metical with respect to bothc2′ andc2′′ rotations (Table 1) and
therefore are symmetrized asL ) 12 states. Consider first the
configuration 2112, which gives rise to 12 symmetrized states,
æ42-æ53:

æ1 ) |6;A1g;11〉 )
1

61/2
∑
k)0

5

11+k02+k...06+k

æ2 ) |6;Bu)iB1u;11〉 )
i

61/2
∑
k)0

5

(-1)k11+k02+k...06+k

æ3 ) |6;E1ua;11〉 )
i

61/2
∑
k)0

5

(F*) k11+k02+k...06+k

æ4 ) |6;E1ub;11〉 )
-i

61/2
∑
k)0

5

Fk11+k02+k...06+k

(9)

æ5 ) |6;E2ga;11〉 )
1

61/2
∑
k)0

5

(G*) k11+k02+k...06+k

æ6 ) |6;E2gb;11〉 )
1

61/2
∑
k)0

5

Gk11+k02+k...06+k

æ7 ) |6;A1g;21〉 )
1

61/2
∑
k)0

5

21+k02+k...06+k

æ13 ) |6;A1g;1213〉 )
1

61/2
∑
k)0

5

01+k12+k13+k04+k...06+k

æ14 ) |6;Bu)B2u;1213〉 )
1

61/2
∑
k)0

5

(-1)k01+k12+k13+k...06+k

æ15 ) |6;E1ua;1213〉 )
1

61/2
∑
k)0

5

(F*) k01+k12+k13+k...06+k

æ16 ) |6;E1ub;1213〉 )
1

61/2
∑
k)0

5

Fk01+k12+k13+k...06+k

(10)

æ17 ) |6;E2ga;1213〉 )
1

61/2
∑
k)0

5

(G*) k01+k12+k13+k...06+k

æ18 ) |6;E2gb;1213〉 )
1

61/2
∑
k)0

5

Gk01+k12+k13+k...06+k

æ19 ) |6;A1g;1214〉 )
1

61/2
∑
k)0

5

01+k12+k03+k04+k05+k16+k

æ25 ) |3;A1g;1114〉 )
1

31/2
∑
k)0

2

11+k02+k03+k14+k05+k06+k

æ26 ) |3;E2ga;1114〉 )
1

31/2
∑
k)0

2

(G*) k11+k02+k03+k14+k05+k06+k

(11)

æ27 ) |3;E2gb;1114〉 )
1

31/2
∑
k)0

2

Gk11+k02+k03+k14+k05+k06+k

æ28 ) |6;A1g;31〉 )
1

61/2
∑
k)0

5

31+k02+k...06+k

æ34 ) |6;A1g;161112〉 )
1

61/2
∑
k)0

5

11+k12+k03+k...16+k

æ40 ) |2;A1g;111315〉 ) 1

21/2
(111315 + 121416)

æ41 ) |2;Bg)B1g;111315〉 ) 1

21/2
(111315 - 121416)

(12)
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As is seen, an asymmetrical configuration such as 2112 yields
12 states with the following symmetries: there are two (E1ua,
E1ub) pairs of s-type andt-type, respectively (Table 3); there
are two (E2ga, E2gb) pairs of s-type andâ-type, respectively
(Table 3); the remaining symmetry species are Ag ) A1g, Ag )
iA2g, Bu ) iB1u, and Bu ) B2u.

The remaining two asymmetrical configurations from then
) 3 manifold, each of them giving rise toL ) 12 states (with

the symmetries described above for the 2112 configuration) are
2113 and 111214.

So far, all possible schemes, required for the symmetrization
of any configuration, belonging to arbitrary overtone nubern,
have already been explored. An algorithm has been designed
and incorporated into the general code for calculation of benzene
vibrational frequencies for automatic symmetrization of an
arbitrary configuration, arising in the course of the search and
active space selection procedure.

IV. Zeroth-Order and Interaction Hamiltonians, Basis
Set Functions, AI Search Procedure, and Hamiltonian
Matrix Manipulation

H0
CH (eq 5) is the zeroth-order Hamiltonian pertaining to the

C-H stretching system, whose symmetrized eigenstates are the
functionsæk, described in detail in the preceding section. The
full zeroth-order Hamiltonian (for the present model treatment)
is written asH0 ) H0

CH + H0
ring, whereH0

ring is the sum of
(1-D and 2-D) harmonic (or Morse) oscillator Hamiltonians
describing the ring symmetrized modes in benzene, in terms of
complex symmetrized coordinatesqi (Table 3).

The model representation of the ring modes in benzene
requires some additional clarification. These modes are described
as symmetrized modes (in terms of complex symmetrized
coordinates) in contrast to the C-H stretches, described as local
modes. According to their symmetry species, the symmetrized
modes are either 1-D (e.g., B1u and A1g) or 2-D (e.g., E1u, E2g,
etc.). The easiest way to proceed is to regard them as (1-D or
2-D) harmonic oscillators, characterized by harmonic frequen-
cies ωk. The formalism employed for description of 1-D and
2-D harmonic oscillator Hamiltonian eigenfunctions (and their
complex symmetry species), as expressed in terms of complex
symmetrized coordinatesqk, has been detailed in our previous
work.35,36In the present work, some of the symmetrized modes
involved will be considered as anharmonic oscillators, in the
following empirical sense. For a vibrationk, described as an
anharmonic 1-D oscillator with harmonic frequencyωk and
anharmonic constantxk, the energy levels are given by a
spectroscopic formula analogous to eq 7:

En ) ωk(n + 1/2) + xk(n + 1/2)2

. In the framework of the Morse oscillator formalism, the
anharmonic constantxk can be related to an effective cubic force
constant,F′k,k,k, through the relationF′k,k,k ) -3(2ωkxk)1/2. This
“effective force constant” does not have a distinct physical
meaning in the case of a nontotally symmetric mode (i.e., any
mode, other thanν1) but is a parameter representative of the
overall effect of several (unknown) cubic and quartic force
constants. Even in the case of the totally symmetric modeν1,
F′1,1,1does not usually coincide with the molecular specific force
constantF1,1,1, but it is an empirical parameter describing the
overall effect of a multitude of anharmonic force constants
contributing to the anharmonicity of theν1 mode.

Next, an empirical formula describing the energy levels of a
2-D anharmonic oscillator isE(n,l) ) ωk(n + 1) + xk(n + 1)2

+ gkkl2, wherel ) n, n - 2, ..., -n. By substitutingn ) na +
nb andl ) na - nb (na andnb are the occupation numbers of the
two separate oscillators) and taking for simplicityxk ) gkk, this
formula takes the formE(n,l) ) E(na,nb) ) ωk(na + 1/2) +
2xk(na + 1/2)2 + ωk(nb + 1/2) + 2xk(nb + 1/2)2. Hence, the
energy levels of a 2-D oscillator can be obtained as the
superposition of two identical anharmonic oscillators, whose
harmonic frequency isωk and anharmonic constant is 2xk. In
that case, the effective cubic force constant characterizing the
anharmonicity of this oscillator can be given by a formula

æ42 ) |12;Ag)A1g;2112〉 )
1

121/2
∑
k)0

5

(16+k21+k02+k03+k04+k05+k + 21+k12+k03+k04+k05+k06+k)

æ43 ) |12;Ag)iA2g;2112〉 )
i

121/2
∑
k)0

5

(21+k12+k03+k04+k05+k06+k - 01+k02+k13+k24+k05+k06+k)

æ44 ) |12;Bu)iB1u;2112〉 )
i

121/2
∑
k)0

5

(-1)k

(21+k12+k03+k04+k05+k06+k - 01+k02+k13+k24+k05+k06+k)

æ45 ) |12;Bu)B2u;2112〉 )
1

121/2
∑
k)0

5

(21+k12+k03+k04+k05+k06+k + 01+k02+k13+k24+k05+k06+k)

æ46 ) |12;E1ua(s);2112〉 )
i

121/2
∑
k)0

5

(F*) k

(21+k12+k03+k04+k05+k06+k + 21+k02+k03+k04+k05+k16+k)

æ47 ) |12;E1ub(s);2112〉 )
-i

121/2
∑
k)0

5

Fk

(21+k12+k03+k04+k05+k06+k + 21+k02+k03+k04+k05+k16+k)

æ48 ) |12;E1ua(t);2112〉 )
1

121/2
∑
k)0

5

(F*) k

(21+k12+k03+k04+k05+k06+k + 01+k02+k13+k24+k05+k06+k)

(13)

æ49 ) |12;E1ub(t);2112〉 )
1

121/2
∑
k)0

5

Fk

(21+k12+k03+k04+k05+k06+k + 01+k02+k13+k24+k05+k06+k)

æ50 ) |12;E2ga(s);2112〉 )
1

121/2
∑
k)0

5

(G*) k

(21+k12+k03+k04+k05+k06+k + 01+k02+k13+k24+k05+k06+k)

æ51 ) |12;E2gb(s);2112〉 )
1

121/2
∑
k)0

5

Gk

(21+k12+k03+k04+k05+k06+k + 01+k02+k13+k24+k05+k06+k)

æ52 ) |12;E2ga(â);2112〉 )
i

121/2
∑
k)0

5

(G*) k

(21+k12+k03+k04+k05+k06+k - 21+k02+k03+k24+k05+k16+k)

æ53 ) |12;E2gb(â);2112〉 )
-i

121/2
∑
k)0

5

Gk

(21+k12+k03+k04+k05+k06+k - 21+k02+k03+k24+k05+k16+k)
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analogous to that in the 1-D oscillator case:F′k,k,k ) -6(ωkxk)1/2.
In the following, the “effective cubic force constants”F′k,k,k for
some of the considered 1-D or 2-D symmetrized modes (in
addition to the harmonic force constantsFi,k determining the
harmonic frequenciesωk) will be regarded as adjustable
parameters, whose values will be varied to reproduce the
experimentally observed fundamental frequenciesνk, as well
as some overtone levels.

In the calculations presented below, only the following ring
modes belonging to the four symmetry blocks in benzene
containing a C-H stretch vibration (A1g, E2g, B1u, E1u) have
been included:

(A1g block) ν1 mode, described by symmetrized coordinate
q1 ) S1 (Whiffen’s coordinate4); the harmonic force constant
involved isF1,1, and the effective cubic force constant isF′1,1,1;
(

E1u block) ν18, ν19 modes; each of them is described as a
2-D oscillator in terms of symmetrized coordinatesq18aandq18b

(of complex symmetry species E1uaand E1ub, respectively),q19a

(E1ua), andq19b (E1ub) (Table 3); the harmonic force constants
involved areF18,18 and F19,19, and the effective cubic force
constant isF′18,18,18; (

B1u block) ν12 mode, described as a 1-D oscillator in terms
of the coordinateq12 (complex symmetry species Bu ) iB1u);
the harmonic force constant involved isF12,12; (

E2g block) ν6, ν8, ν9 modes; each of them is described as a
2-D harmonic oscillator in terms of symmetrized coordinates
q6a (E2ga), q6b (E2gb), q8a (E2ga), q8b (E2gb), q9a (E2ga), andq9b

(E2gb) (Table 3); the harmonic force constants involved areF6,6,
F8,8, andF9,9, and the effective cubic force constants areF′8,8,8

andF′9,9,9.
The eigenfunctionsø of the ring zeroth-order Hamiltonian

H0
ring are obtained as products of harmonic oscillator eigen-

functionsøk(qk) for each one of the ring modes summarized
above:

The eigenfunctions|i〉 of the full zeroth-order Hamiltonian
H0 ) H0

CH + H0
ring are obtained as the product ofæk (the

symmetrized eigenfunction of the C-H stretch Hamiltonian
H0

CH) and of ø (the symmetrized eigenfunction of the ring
HamiltonianH0

CH): |i〉 ) æø. All of the harmonic oscillator
eigenfunctionsøk(qk) have well-defined CSSs (which has been
detailed in our previous work35), and therefore, their product
has well-defined CSSs as well. And sinceæk is also sym-
metrized, the basis vectors of the present description|i〉 also
have a well-defined CSS.

Since the modes have been described in terms of symmetrized
curvilinear (not normal) coordinates, two basis states,|i〉 and
|k〉 (belonging to one and the same CSS), can be coupled to
each other by quadratic interaction Hamiltonian terms:

for the case of two nondegenerate coordinates, e.g.,q12 andq13,
and

for the case of two degenerate coordinates, e.g., (q6a, q6b) and

(q7a, q7b) (Table 3).Gi,k are Wilson’s nondiagonalG-matrix
elements1 andFi,k are the relevant nondiagonal harmonic force
constants. One of the coordinatesi or k can be a C-H stretch
coordinate (q2, q7a,b, q13, q20a,b). In such a case, for the calculation
of the relevant interaction Hamiltonian matrix elements, this
coordinate has to be expanded in terms of the local bond C-H
stretchessi (Table 3). Besides the terms of typesHi,k andH(d)

i,k,
the quadratic interaction Hamiltonian also contains three small
terms, corresponding to the (potential) coupling between dif-
ferent C-H bond stretchessi:

where f1,2, f1,3, and f1,4 are small nondiagonal quadratic force
constants.1,8 The complete form of the quadratic interaction
Hamiltonian is given by

The quadratic nondiagonal force constants involved in the
interaction HamiltonianHint areF1,2, F18,19, F18,20, F19,20, F12,13,
F6,7, F6,8, F6,9, F7,8, F7,9, F8,9, f1,2, f1,3, andf1,4. In this work we
are not taking into account any cubic or higher order Hamil-
tonian interaction terms.

In our preceding work,30 the calculation of matrix elements
of the type 〈i|H1,2|k〉, with both basis functions|i〉 and |k〉
belonging to the totally symmetric species A1g, has been
discussed in considerable detail. For the general case, when|i〉
and |k〉 belong to an arbitrary CSS, and when other terms of
the interaction Hamiltonian besidesH1,2 are involved, the
calculation of coupling matrix elements〈i|Hint|k〉 is a nontrivial
task. The main difficulties arise in the calculation of that part
of the matrix element involving a symmetrized C-H stretch
coordinate. A specific algorithm has been designed for calcula-
tion of the C-H stretch containing part, and incorporated into
the general algorithm, employed for computing the matrix
elements〈i|Hint|k〉.29

The AI search procedure, employed for selecting an active
space (AS) from the infinite manifold of available symmetrized
basis states|k〉, and setting up of the Hamiltonian matrix, has
been delineated before.30,35Starting with an appropriately chosen
initial basis state,|0〉, the algorithm proceeds to select all basis
states|k〉 (of the same CSS as|0〉), coupled to this state through
matrix elements of the interaction HamiltonianHint. In practice
this is implemented by applying successively on|0〉 all terms
from Hint (18), expressed in operator form. Simultaneously, the
energiesEk of the selected states|k〉, as well as the relevant
coupling matrix elements〈0|Hint|k〉, are calculated and stored
into computer memory, as the diagonal and nondiagonal
elements of the Hamiltonian matrixHk,k andH0,k, respectively.
The search algorithm has several adjustable parameters. One
of them isC, which determines the minimum matrix element
to energy difference ratio, for which a new state is selected. In
the next stage of the search, each one of the initially selected
states|k〉 is explored, applyingHint in operator form as above,
and as a result more basis states|j〉 are selected. Their energies
Ej and coupling matrix elements〈k|Hint|j〉 are calculated and
built into the Hamiltonian matrixHi,k. This procedure is carried
on until a sufficiently large and representative AS of dimen-
sionalityN (which is another one of the adjustable parameters)
has been selected. For the purpose of the calculations in this

ø ) ∏
k

ønk(qk) ) |n1,n12,n6a,n6b,...〉 (14)

Hi,k ) -p2Gi,k
∂

2

∂qi∂qk*
+ Fi,kqiqk* (15)

H(d)
i,k ) -p2Gi,k( ∂

2

∂qia∂qkb
+ ∂

2

∂qib∂qka
) + Fi,k(qiaqkb + qibqka)

(16)

H1
CH ) V1

CH ) f1,2(s1s2 + s2s3 + ... + s6s1) + f1,3(s1s3 +
s2s4 + ... + s6s2) + f1,4(s1s4 + s2s5 + s3s6) (17)

H{int} ) H1,2 + H12,13+ H(d)
6,7 + H(d)

6,8 + H(d)
6,9 + H(d)

7,8 +

H(d)
7,9 + H(d)

8,9 + H(d)
18,19+ H(d)

18,20+ H(d)
19,20+ H1

CH

(18)
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work, the initial state|0〉 was usually chosen as one of the C-H
stretch fundamentals|0〉 ) |6;S;11〉 (whereS is one of the CSSs
Ag ) A1g, Bu ) iB1u, E2ga, and E1ua), with no ring modes excited.

To obtain the eigenvalues of the selected Hamiltonian matrix
Hi,k, it had to be diagonalized numerically. For this purpose,
because of the large dimensionalityN, a Lanczos tridiagonal-
ization procedure has been used.41,42 For each isotopomer of
C6H6 explored, an additional calculation had to be carried out
to obtain the energy of the ground vibrational state. For this
calculation, the initial state was chosen as|0〉 ) |1;A1g;0〉. To
obtain the molecular vibrational levels, which can then be
compared to experimentally observed fundamental, overtone,
or combination frequencies, the ground vibrational state energy
must be subtracted from the computed eigenvalues ofHi,k. In
each calculation, the dimensionalityN of the selected AS has
been increased, and some other parameter values varied, until
convergent and realistic results have been obtained.

V. Results and Discussion

As already mentioned above, in benzene there are four
vibrational symmetry blocks involving a C-H stretch vibra-
tion: A1g(ν1,ν2), E2g(ν6,ν7,ν8,ν9), B1u(ν12,ν13), E1u(ν18,ν19,ν20).
In general, using the model described above, two types of
calculations are possible and have been performed in the present
work, according to the specific case considered. The first one
is block-limited calculation, i.e., taking into account only the
Hamiltonian terms pertaining to the vibrations of a single
vibrational mode block with a given symmetry type. This
procedure is analogous to the well-known Wilson FG analysis.1

Such block-limited calculations have already been performed
in our previous work29,30for the vibrational blocks of symmetries
A1g and E1u. The second type of (large-scale) calculation
incorporates all the Hamiltonian terms pertaining to all the
vibrations belonging to the four symmetry blocks in benzene
containing a C-H stretch. In the block-limited calculations, the
available vibrational level density is small. As a result of this,
the Hamiltonian matrixes required for convergent results to be
obtained are comparatively small dimensional,N not exceeding
2000 as a rule. Hence, the block-limited calculations are
conveniently fast, because they do not involve manipulation of
large dimensional Hamiltonian matrixes. Block-limited calcula-
tions can easily be performed for each one of the four vibrational
symmetry blocks involving a C-H stretch by selecting basis
states (of the relevant symmetry type) whose composition
includes only excitations of the vibrations belonging to this
block. On the other hand, in the large-scale calculation, the level
density involved is already quite high and very large dimensional
Hamiltonian matrixes are required (on the order ofN ) 70000)
to obtain convergent results. Of course the large-scale calcula-
tions are expected to yield results which are closer to reality,
as compared to the block-limited calculations, because they
encompass more fully the levels of the C-H stretch vibrational
system of benzene. Therefore, the feasibility of the results
obtained from block-limited calculations should be checked
against the results from the large-scale calculations performed
at a sufficiently largeN value (after convergence has been
achieved). In the present work, both types of calculations, block-
limited as well as large-scale, have been performed. The choice
between one or the other type of calculation has been made for
each concrete case, taking into account a number of consider-
ations of convenience and feasibility of the results obtained.
Our experience with both types of calculations has led to the
following observations and conclusions, which were helpful to
make the right choice. In the large-scale calculations, upon

increasing the dimensionalityN, the calculated C-H stretch
fundamental frequencies (at∼3000 cm-1) were found to
converge at a much smaller value ofN (as a rule around
∼40000), as compared to the non-C-H stretch (ring) frequen-
cies, which required values of 70000 and higher to converge.
It was also found that, for a given set of input force constant
values, the converged values of the ring fundamentals obtained
from the (rather difficult) large-scale calculations practically
coincided with those obtained from the (quite fast) block-limited
calculations. However, this was not true for the C-H stretch
fundamentals, whose values obtained from the block-limited
calculations could differ by as much as 20-30 cm-1 from the
results of large-scale calculations. Of course, the C-H stretch
frequencies obtained from the large-scale calculations should
be considered as the correct ones. Both block-limited and large-
scale calculations have shown that the ring mode fundamentals
calculated were sensitive to the input values of the harmonic
force constants related to these modes, e.g.,F1,1, F1,2, F6,6, F6,7,
etc., but depended negligibly upon the values of the force
constantsfss, f1,2, f1,3, and f1,4 characterizing the C-H stretch
system. These latter force constant values were however
determined for the four C-H stretch frequenciesν2, ν7, ν13,
andν20 only, not affecting the ring fundamentals.

From these observations the following practical rules could
be derived, which were used for adjustment (variation) of the
input force constant values to obtain a good fit of the
theoretically calculated fundamentals to the experimentally
measured fundamentals. As a first step, the harmonic force
constants pertaining to the ring modes can be determined, using
fast block-limited calculations, by adjustment of their values
(regarded as variable parameters), until a good fit was achieved
of the calculated to the experimentally measured ring funda-
mentals. Having determined the values of the ring mode
harmonic force constants (F1,1, F1,2, etc.), as a second step, large-
scale calculations can be performed to obtain the best values
for the force constantsfss, f1,2, f1,3, and f1,4 characterizing the
C-H stretch system. Fortunately, these large-scale calculations
do not require very highN values, since, as pointed out above,
the C-H stretch fundamentals converged already at aboutN )
40000.

Table 4 presents the results from the calculations on the ring
fundamental frequencies belonging to the four C-H stretch
containing symmetry blocks in benzene for each one of the four
D6h isotopomers C6H6, C6D6, 13C6H6, and 13C6D6. These are
the values corresponding to the best possible fit with the
experimentally measured fundamentals. The latter are also
displayed in the table for comparison. A survey of the data
presented in Table 4 shows that there is a particularly good fit
achieved of the calculated to the experimentally measured
fundamentals, practically for all fourD6h isotopomers. The first
and second overtone energy levels of the totally symmetric mode
ν1 are also shown in Table 4 and are seen to be in satisfactory
agreement with the corresponding experimentally measured
values.25,43

The values of the relevant harmonic force constants corre-
sponding to this set of ring fundamentals (Table 4) are
summarized in Table 5a. The active space dimension, required
for convergence of these block-limited calculations, did not
exceed 2000 as a rule. The values for the C-H stretch force
constants employed in these calculations, whose effect upon
the ring fundamentals was negligible, were used as determined
in our previous work.29 Part of the results contained in Table
5a were published previously.29,30The present calculations have
confirmed the previously obtained results concerning the
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harmonic force constantsF1,1, F1,2, F18,18, F19,19, F18,19, F18,20,
andF19,20 (with slight modifications).29,30

As already pointed out, the block-limited calculations were
found not suitable for determination of the C-H stretch
fundamentals. This is probably due to the fact that each one of
them involved only partially the excited (overtone) levels
belonging to the C-H stretch system (as described in detail in
the previous section). Hence, the values for the force constants
fss, f1,2, f1,3, andf1,4, obtained in our previous work29,30by block-
limited calculations, were not correct and will have to be
modified in the present work. For the correct determination of
C-H stretch fundamental and overtone frequencies, large-scale
calculations had to be carried out, encompassing all Hamiltonian
terms and vibrational modes belonging to the four symmetry
blocks A1g, E2g, B1u, and E1u. Before the fitting procedure

employed in this case is described, some additional consider-
ations should be mentioned. It is well-known that the C-H
stretch fundamentals, due to their high frequencies (∼3000
cm-1), are inevitably more or less strongly perturbed by nearby
combination or overtone levels of the ring modes through higher
order (mainly cubic) interactions. Since in the present work we
are not taking into account any cubic or higher order nondi-
agonal Hamiltonian coupling terms, it is not reasonable to expect
that a particularly good fit could be achieved of the calculated
to the experimentally measured C-H stretch frequencies.
Nevertheless, as will be seen below, we have been able to
determine a set of harmonic force constant valuesfss, f1,2, f1,3,
andf1,4 for the C-H stretch system, allowing for a satisfactory
reproduction of the majority of C-H (C-D) stretch fundamen-
tals (as well as some of the lower overtone energies), which

TABLE 4: Calculated Fundamental Frequencies of Non-C-H Stretch Vibrations (cm-1) for D6h Symmetry Benzenes,
Corresponding to the Best Fit Values for the Force Constant Parameters (mdyn and A), Given in Table 5

C6H6 C6D6
13C6H6

13C6D6

calc exptl calcd exptl calcd exptl calcd exptl

A1g ν1 993.0 993.071 [23] 945.7 945.583 [23] 957.4 957.4 [40] 915.6 916.6 [8]
2ν1 1984.6 1984.9 [25,43] 1889.9 1889.8 [25]
3ν1 2974.6 2975.4 [25,43] 2832.8 2832.6 [25]

E1u ν18 1038.4 1038.2670 [17] 814.1 814.2969 [17] 1018.6 1018.379 8 [17] 808.1 808.5479 [47]
ν19 1484.0 1483.9854 [17] 1336.8 1335.2212 [17] 1453.3 1454.257 6 [17] 1295.3 1295.756 4 [47]

B1u ν12 1013.7 1013.7 [27] 964.6 970a [16] 977.3 934.0
E2g ν6 609.0 608.13 [23] 576.2 580.2 [48] 587.1 584.2 [49] 558.5 561.3 [8]

ν9 1177.2 1177.776 [23] 866.3 867.0 [23] 1169.9 862.4
ν8 1602.5 1600.9764 [50] 1554.3 1558.3 [23] 1548.9 1499.0

a Estimated from combinations in ref 16.

TABLE 5: Calculated Harmonic as Well as Some Important Cubic Diagonal Force Constants Pertaining to the Four C-H
Stretch Containing Vibrational Blocks in Benzene, A1g, E2g, B1u, E1u, Compared to the Previously Empirically Determined
Values by Goodman et al. [Ref 8] (for the Harmonic Constants) or Obtained from ab Initio Computations by Maslen et al. [Ref
11] (mdyn and A)

(a) Harmonic Force Constants Pertaining to the Non-C-H Stretch (Ring) Vibrations

F1,1 F1,2 F18,18 F19,19 F18,19 F18,20 F19,20 F12,12 F12,13

calculated 7.630 0.030 0.931 7.403 0.221 0.214 0.590 7.661 -0.010
Goodman et al.8 7.616 0.157 0.926 7.380 0.209 0.151 0.572 7.658 -0.237

F6,6 F8,8 F9,9 F6,7 F6,8 F6,9 F7,8 F7,9 F8,9

calculated 0.667 6.690 0.910 0.020 0.388 -0.235 0.054 -0.066 -0.030
Goodman et al.8 0.644 6.690 0.895 -0.136 0.308 -0.140 0.054 -0.066 -0.398

(b) Harmonic Force Constants Pertaining to the C-H Stretch System

fss f1,2 f1,3 f1,4 F2,2 F7,7 F13,13 F20,20

calculated 5.515 0.007 0.008 -0.005 5.540 5.495 5.522 5.519
Goodman et al.8 5.547 0.007 0.008 -0.022 5.554 5.510 5.571 5.568

(c) Cubic Diagonal Force Constantfsssand Effective Anharmonic Force ConstantsF′k,k,k for Some of the More Strongly Anharmonic
Symmetrized Modes

fsss F′1,1,1 F′8,8,8 F′9,9,9 F′18,18,1 8

calculated -29.72 -16.73 -10.71 -1.08 -1.50
Maslen et al.11 -34.289 -18.289 -11.633

TABLE 6: Calculated Fundamental Frequencies of C-H Stretch Vibrations (cm-1) for D6h Symmetry Benzenes, Corresponding
to the Best Fit Values for the Force Constant Parameters (mdyn and A), Given in Table 5b

C6H6 C6D6
13C6H6

13C6D6

calc exptl calcd exptl calcd exptl calcd exptl

A1g ν2 3076.1 3073.942 [23] 2300.3 2303.44 [23] 3064.9 3049.8 [40] 2283.6 2283.9 [8]
E1u ν20 3064.8 3064.3674 [17] 2285.7 2289.3 [40] 3055.3 3065.4540 [17] 2268.8 2266.0796 [47]

CH (n ) 2) 6004.5 6005 [44] 4489.3 4497 [31]
CH (n ) 3) 8836.4 8827 [44] 6660 6634 [31]

B1u ν13 3027.2 3028b [39] 2249.4 2285a [16] 3019.6 2234.1
3057a [16]

E2g ν7 3059.1 3056.7 [23] 2285.6 2272.5 [23] 3049.2 2267.3

a Estimated from combinations in ref 16.b Estimated from combinations in ref 14.
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have been experimentally measured. There are several prominent
exceptions of strong mismatch between calculated and experi-
mentally observed values. Some of them can be presumably
explained as strong Fermi resonances, which have not been
deperturbed, or as wrongly indirectly estimated frequencies from
experimentally observed combinations in the literature. To carry
out the adjustment procedure, we have proceeded in the
following way. First of all, we are taking into account the
observation29 that the calculated values for theν2(A1g) C-H
(C-D) stretch fundamentals of all four benzene isotopomers
solely depend on the value of the force constantF2,2 ) fss +
2(f1,2 + f1,3) + f1,4, but not on the values offss, f1,2, f1,3, andf1,4

separately. To make use of this observation, we have set initially
f1,2 ) f1,3 ) f1,4 ) 0, F2,2 ) fss, and performed large-scale
calculations on theν2(A1g) fundamentals of the four benzene
D6h isotopomers, varying the value ofF2,2 ) fss, and aiming to
achieve a satisfactory fit with as many as possible of the four
ν2 fundamentals experimentally measured.8,23,40 It was found
that the best fit was achieved atF2,2 ) 5.540. The calculatedν2

frequencies are displayed in Table 6, together with the relevant
experimentally measured values. The fit is quite acceptable for
the isotopomers C6H6 (∆ ) 2.15 cm-1), C6D6 (∆ ) 3.14 cm-1),
and 13C6D6 (∆ ) 0.3 cm-1), but very poor for13C6H6 (∆ )
15.1 cm-1), where∆ is the difference between theoretically
calculated and experimentally measured frequencies. This latter
case can be attributed to strong Fermi interaction. On the basis
of this fit, F2,2 ) 5.540 was accepted as the correct value.

C-H (C-D) stretch vibrations in benzene are an example
of well-expressed local mode behavior due to the weak
interactions among different C-H bonds. For such a system it
follows from LM theory that the C-H (C-D) stretch overtone
energies are determined almost entirely by the values of the
bond diagonal force constantsfss and fsss, being practically
independent of the values of the small nondiagonal force
constantsf1,2, f1,3, and f1,4. Those latter force constants are
determined only for the four fundamental C-H (C-D) stretch
frequencies. Consequently, purely local C-H stretch overtone
states of different symmetries (e.g.,|6;A1g;n1〉, |6;E1u;n1〉, etc.,
for n > 1) are practically isoenergetic, while the fundamentals
atn ) 1 are not. On the other hand, the energies of E1u overtone
states|6;E1u;n1〉 for C6H6 and C6D6 isotopomers have been
measured experimentally.31,44 Taking this into account, large-
scale calculations were performed on several lower C-H (C-
D) stretch overtone energies of the states|6;E1u;n1〉 for both
C6H6 and C6D6 isotopomers, varying the values of force
constantsfssandfsss, and trying to obtain a reasonable fit of the
calculated to the experimentally measured overtone energy
levels. These large-scale calculations were carried out atN )
50000, which ensured good convergence of the results. The best
possible fit was achieved atfss ) 5.515 andfsss) -29.72. The
calculated first and second C-H (C-D) stretch E1u overtone
energies for the isotopomers C6H6 and C6D6 are displayed in
Table 6 (lower rows), together with the available experimentally
measured data. It is seen that the fit for the C6H6 overtones is
particularly good, while that for C6D6 can hardly be called
satisfactory. However, it should be taken into account that the
absorption peaks for C6D6 overtones measured by Reddy et al.31

are very broad, and therefore, the transition energy was
determined only approximately. In fact, the estimates of Reddy
et al.31 for the lower C6H6 overtone transitions were also found
to be rather poor approximations when the high-precision data
became available.44-46 So, the valuesfss ) 5.515 andfsss )
-29.72 were accepted as the correct ones. Having so far
determined the values ofF2,2 andfss, a linear relation could be

derived for the three nondiagonal small force constantsf1,2, f1,3,
and f1,4: F2,2 - fss ) 0.025) 2(f1,2 + f1,3) + f1,4.

Next, large-scale calculations on the C-H stretch fundamen-
talsν7, ν13, andν20 for all four benzene isotopomers were carried
out, with the force constantsf1,2, f1,3, and f1,4 being varied
independently, however satisfying the above constraint. The aim
was to achieve the best possible fit for the calculated to the
experimentally measured (where available) C-H stretch fun-
damentalsν7, ν13, andν20. As a result of the calculations, the
following values have been determined for the small nondi-
agonal force constants:f1,2 ) 0.007,f1,3 ) 0.008,f1,4 ) -0.005.
All obtained harmonic force constant values pertaining to the
C-H stretch system are summarized in Table 5b. The C-H
stretch fundamentalsν7, ν13, and ν20 for the four benzene
isotopomers considered, calculated with this set of input force
constant values (Table 5b), are displayed in Table 6. The values
of experimentally measured frequencies are also displayed for
comparison, where the data are available.

For the ν20 fundamentals (strongly IR active) the most
accurate experimentally measured data exist. It is seen that the
results from the calculations for theν20 fundamentals are
satisfactory fits for all isotopomers with the exception of13C6H6

(similarly to the case ofν2), where the calculated value deviates
by as much as 10 cm-1 from the experimentally measured one.
In the case of theν7 (Raman active) frequency, experimental
data are available for benzene and deuteriobenzene only. The
calculated value ofν7 for C6H6 fits satisfactorily to the
experimentally measured value, while for C6D6 the fit is rather
poor (∆ ) 13.1 cm-1). In the case ofν13, the fundamentals
have not been measured directly, but estimated for benzene and
deuteriobenzene from combinations with other modes. For this
fundamental, the mismatch between calculated and estimated
values (for the condensed phase)16 is seen to be particularly
strong (Table 6). However, this mode is known for its extremely
strong Fermi interactions with other mode combinations.
Furthermore, recently Cane et al.14 have estimatedν7 in gas-
phase C6H6 from another combination and have obtained the
value of 3028 cm-1, which practically coincides with the
theoretically calculated one (Table 6).

In Table 5 all harmonic and diagonal anharmonic force
constants determined in the present work have been summarized,
together with a set of values obtained by other authors8,11 for
comparison. As pointed out above, the values for harmonic force
constants pertaining to the C-H stretch system (fss in particular)
deviate considerably from that determined in our previous
work.29 The calculated force constant values pertaining to the
essentially harmonic ring modes should be regarded as very
reliable, judging by the very good fit achieved between the
calculated and experimentally measured fundamentals for all
four benzene isotopomers. Some of these force constants
however diverge considerably from the best available empiri-
cally determined set of Goodman et al.8 In particular, some
nondiagonal quadratic force constants were obtained much
smaller than the previous determinations (F1,2, F6,7, F8,9, F12,13,
Table 5). The presently determined set of C-H stretch quadratic
force constantsfss, f1,2, f1,3, andf1,4 should probably be regarded
as less reliable, because of the uncertainties connected with the
multitude of Fermi interactions, affecting more or less strongly
most of the C-H stretch fundamentals.

VI. Conclusion

In the first part of this work, it has been our aim to introduce
a specific vibrational model designated for calculations on the
vibrational energy levels in benzene. The first key feature of
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the model is its combined LM/SM character. For the description
of the C-H stretch system in benzene, an LM formalism was
applied (using the six local bond C-H stretch coordinatessk),
while, for the remaining non-C-H stretch vibrations, a sym-
metrized mode treatment based on symmetrized vibrational
coordinates was applied. The model is entirely based on the
Morse oscillator formalism: the local C-H stretches are
regarded as six identical Morse oscillators, and some of the
symmetrized ring vibrations are also considered as Morse
oscillators, the remaining modes being described as harmonic
oscillators. Our main reason for using such a combined model
was to achieve the fastest possible convergence of the benzene
potential energy expansion, i.e., the smallest possible number
of higher order force constants, attaining nonnegligible values.
When expanded in terms of the combined LM/SM set of
coordinates, the potential function takes the following form:

In this representation, the only higher order force constants
retained are cubic diagonal: the local one,fsss, and several
symmetrized ones,Fk,k,k.

The second key feature of the model is the set of complex
symmetrized curvilinear vibrational coordinates used, which can
be expressed as simple linear combinations of Whiffen’s
coordinates. The complex vibrational coordinates and wave
functions (Hamiltonian eigenfunctions) for the description of
vibrational motion in benzene were shown to possess interesting
transformation behavior under the symmetry operations of the
molecular (symmetric top) point groupD6h. This behavior was
analyzed and classified as a CSS. CSSs can be defined for all
symmetric top point groups. The description in terms of complex
symmetrized coordinates and wave functions allows for the
construction of a separable symmetrized infinite-dimensional
vibrational basis set. Employment of such a highly symmetrized
formalism (basis set and Hamiltonian representation) strongly
(by more than an order of magnitude) reduces the size of the
Hamiltonian matrix required for convergence of large-scale
computations, as compared to the case of a nonsymmetrized
treatment.

In the second part of this work, the complex symmetrized
LM/SM vibrational model was applied to carry out calculations
on a large number of vibrational energy levels (mainly
fundamentals) of four benzeneD6h isotopomers: C6H6, C6D6,
13C6H6, 13C6D6. The principal aim of the calculations was to
determine a reliable set of harmonic force constants for benzene.
Using the determined force constant values, it has been possible
to reproduce very well a large number of experimentally
measured vibrational (both fundamental and overtone) energy
levels of various symmetries for all four benzeneD6h species.
It is noteworthy that this fit was obtained with a very small
number of “effective” higher order force constants taken into
account (Table 5c).

Thus, a major conclusion from the results obtained in this
work could be that the set of harmonic force constant values
obtained are very good approximations to the true harmonic
force constants for benzene. It is noteworthy that a considerable
number of these values are substantially different from the best
available set of empirically determined values, given by

Goodman et al.8 (Table 5). Another important conclusion from
the results of the present calculations is that the LM/SM model
based on the combined LM/SM expansion of the potential
energy (eq 19) is a very good representation.

Our work in this direction will be continued. In the first place,
a complete set of symmetrized harmonic force constants for
benzene will be obtained (by considering the non-C-H stretch
containing blocks of vibrations, A2 g(ν3), B2 g(ν4, ν5), E1 g(ν10),
A2u(ν11), B2u(ν14, ν15), E2u(ν16, ν17), in addition to the already
studied four C-H stretch containing blocks). Using them, a set
of internal (valence) harmonic force constants will be calculated
to check the physical feasibility of the obtained harmonic force
field. Having determined a reliable set of benzene ground
electronic state harmonic force constants, we shall introduce a
number of nondiagonal cubic (as well as some quartic) force
constants in the large-scale calculations, together with the
relevant higher order kinetic Hamiltonian terms. In this way
we hope to be able to achieve a better fit to the experimentally
known C-H stretch fundamental frequencies as well as a
realistic description of the vibrational structure and IVR in the
range of the first C-H stretching overtone (at 6000 cm-1),
where very detailed experimental data have become available
lately.34-36
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